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Abstract

This paper describes a new approach to the high-fidelity simulation of axisymmetric free-surface flows. A boundary-
fitted grid is coupled with a new projection method for the solution of the Navier–Stokes equations with second-order
accuracy in space and time. Two variants of this new method are developed by adapting two existing algorithms, suitable
for prescribed velocity boundary conditions, to the case of prescribed normal and tangential stresses at the free boundary.
A normal-mode analysis for a fixed-boundary problem confirms the second-order accuracy of the algorithms. The
approach is validated by comparison with a Rayleigh–Plesset solution for an oscillating spherical bubble, with an analysis
of shape oscillations, and with existing results for the buoyant rise of a deforming bubble for Reynolds numbers up to 200
and Weber numbers up to 12. In addition to the simulation of axisymmetric free-surface flows of intrinsic interest, the
present approach is suitable for the validation of genuinely three-dimensional calculations.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The development of computational methods for free-surface fluid flows is a very active research area. Sev-
eral approaches have been formulated and a considerable effort is being expended in their extension and
improvement. The use of a fixed finite-difference grid over which the interface moves is particularly attractive
for reasons of efficiency and flexibility and a large fraction of the contemporary work in this area makes use of
this approach. Among the many approaches developed one may mention front tracking (see e.g. [5,1–4,6–10]),
the volume of fluid method (see e.g. [11–16]), the level set method (see e.g. [17–23]), the ghost fluid method (see
e.g. [24–26]), the immersed boundary method (see e.g. [27–29]), sharp interface methods (see e.g. [30–32,26,33])
and others [34,35].
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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Irrespective of the approach followed, validation remains a crucial issue in the development of complex
computational tools. Analytical solutions are often limited to such simple situations that it may not be pos-
sible to put to a stringent test the full algorithm of the code. Comparison with the results given by other codes
becomes therefore one of the primary validation tools, which justifies the development of high-fidelity simu-
lation methods. One such method relies on boundary-fitted coordinates. The type of problems that lend them-
selves to this approach is somewhat restricted in two-dimensional or axisymmetric situations, and severely
limited in three dimensions due to the difficulty of generating an orthogonal grid. However, even with
restricted applicability, such methods are attractive due to their accuracy which can generate ‘‘numerically ex-
act’’ solutions for complex problems.

The objective of the present paper is to describe a method based on orthogonal boundary-fitted coordinates
suitable for the study of complex near-surface phenomena and code validation for axisymmetric problems.
The method has second-order accuracy in both space and time. The grid generation algorithm, based on
the well-known approach of [36,37], was described earlier [38–40] and is summarized in Section 5. Two ver-
sions of the second-order projection method for the solution of the Navier–Stokes equations suitable for
the prescribed pressure, rather than velocity, boundary conditions that arise in free-surface flows are de-
scribed. These methods derive from the work of [41] and are presented in Sections 2–4. Section 6 describes
the complete algorithm which is tested and validated in Section 7.

The considerable success of the early projection (or fractional step) methods has prompted several exten-
sions to second-order accuracy in time (see e.g. [42–45,41,46–49]). All of these papers consider problems in
which the boundary velocity is prescribed, which leads to a Neumann condition for the pressure or pres-
sure-like variable. The situation is different in free-surface flows where typically a pressure or pressure jump
is prescribed on at least part of the boundary. Very few papers consider second-order methods for this case
[14,26,50–52]. In some of these [50,51,26], the free-surface boundary condition is incorporated directly into
the discretization of the Poisson equation, so that the interface is not treated as a boundary for the pressure
calculation. A disadvantage of this approach is that the pressure condition is approximated using pressure val-
ues near the interface, rather than at the interface itself. Ref. [52] uses the method of [53], where the boundary
condition is introduced as a localized volume force and the free surface is diffused over a few grid cells, which
may not be desirable for certain applications. Ref. [14] is only concerned with surface convection by a pre-
scribed velocity field and the subsequent reconstruction.

The seemingly minor modification of imposing pressure conditions at the boundary has important conse-
quences for the projection method because, if the Poisson equation is solved with Dirichlet conditions, the
incompressibility constraint is not automatically satisfied at the boundary [54,55]. This point is very important
because, as shown in [41], the treatment of boundary conditions is crucial to achieve second-order accuracy for
the pressure field and, therefore, this issue did not arise in the many first-order algorithms available in the
literature (see e.g. [56–59,24,9] and many others).
2. Two second-order projection methods for free-surface flows

The differential form of the problem we consider in this paper consists of the Navier–Stokes equations for
an incompressible liquid
r � u ¼ 0; ð1Þ
ou

ot
þ u � ru ¼ � 1

q
rp þ mr2uþ g ð2Þ
in which u is the velocity, p the pressure, q the density, m the kinematic viscosity, and g the body force, subject
to conditions at a free surface separating the liquid from a gas having negligible inertia and viscosity. With this
assumption, the effect of the gas reduces to imposing a pressure pg – either known or calculated by other means
– and the vanishing of the tangential stresses:
p ¼ pg � rC þ ln � ðruþruTÞ � n; ð3Þ
t � ðruþruTÞ � n ¼ 0. ð4Þ



576 B. Yang, A. Prosperetti / Journal of Computational Physics 213 (2006) 574–590
Here r is the surface tension coefficient, C the surface curvature, n the unit normal directed into the gas, t a
unit vector in the tangential direction, and the superscript T denotes the transpose. The interface position is
updated by integrating
dx

dt
¼ uðx; tÞ; ð5Þ
where x is the generic interface point.
We consider two variants of the projection method of [41], both accurate to second order in space and time,

and both originally developed for prescribed-velocity boundary conditions. Both variants use an intermediate
velocity u* and a pressure-like variable / in terms of which the end-of-time-step velocity un+1 is given by
unþ1 ¼ u� � Dt
q
rh/

nþ1 ð6Þ
in which $h is a second-order-accurate discrete approximation to the gradient operator; u* and / are related to
each other by the Poisson equation
Dtr2
h/

nþ1 ¼ qrh � u�. ð7Þ
The difference between the two variants lies in the definition of u* and the relation between p and /. In the first
method, / is essentially the increment necessary to update the pressure from time level n � 1/2 to time level
n + 1/2; we refer to this method as the pressure-increment method. For the second method – referred to as
pressure-free method – / essentially represents the new pressure field. We carry both methods at the same time
by writing
pnþ1=2 ¼ bpn�1=2 þ /nþ1 � mDt
2

r2
h/

nþ1; ð8Þ
where
b ¼
1 pressure-increment method;

0 pressure-free method

�
ð9Þ
and u* is the solution of
u� � un

Dt
þ b
q
rhpn�1=2 ¼ �½ðu � rhÞu�nþ1=2 þ m

2
r2

hðun þ u�Þ þ g ð10Þ
in which [(u Æ $h)u]
n+1/2 is a second-order-accurate discretization of the convective term.

In the original formulation of [41] developed for a prescribed velocity ub at the boundary, the pressure Pois-
son equation (7) is solved subject to the Neumann condition
ðn � rh/
nþ1ÞjoX ¼ 0; ð11Þ
while the boundary conditions for the Helmholtz equation (10) for u* are
n � u�joX ¼ n � unþ1
b ; ð12Þ

t � u�joX ¼ t � unþ1
b þ ð1� bÞDt

q
rh/

njoX. ð13Þ
In the present formulation, in which it is the pressure on (part of) the boundary to be prescribed rather than the
velocity, the boundary conditions need to be modified. According to the analysis of [41], an essential feature
necessary to ensure second-order time accuracy for the pressure all the way up to the boundary is the absence
of boundary layers in the intermediate velocity u*. A consideration of this result and of the relation (8)
between / and p suggests then to impose
r2
h/

nþ1 ¼ 0 ð14Þ



B. Yang, A. Prosperetti / Journal of Computational Physics 213 (2006) 574–590 577
on the free surface, as a consequence of which, from (7),
rh � u�joX ¼ 0 ð15Þ

on the free surface. As shown in Sections 4 and 5, this equation can be used to obtain an estimate of u* Æ n on
the free surface thus replacing (12). Since u and p are expected to be smooth near the interface, (6) and (8)
suggest that, with this choice, u* should also be smooth. From (8), the boundary condition for / is then
/nþ1 ¼ pnþ1=2 � bpn�1=2

¼ pnþ1=2
g � bpn�1=2 � rCnþ1=2 þ lnnþ1=2 � ½rhu

nþ1=2 þ ðrhu
nþ1=2ÞT� � nnþ1=2

ð16Þ
which replaces (11) for the solution of the Poisson equation. Since this relation applies on the free surface, the
term r2

h/ appearing in the pressure relation (8) is absent due to (14). The normal mode analysis presented in
the next section illustrates the role of the condition (15) in securing second-order time accuracy. A finite-dif-
ference approximation to the tangential stress condition
tnþ1 � ½rhu
� þ ðrhu

�ÞT� � nnþ1 ¼ Dt
q
tnþ1 � ½rhrh/

nþ1 þ ðrhrh/
nþ1ÞT� � nnþ1 ¼ 0 ð17Þ
is a suitable replacement for (13), while all other elements of the methods remain unchanged.
In summary, the present method consists of calculating u* from (10) subject to the conditions (15) and (17),

/ from (7) subject to (16), and updating the interface position from (5).
The boundary conditions for the calculation of the velocity and pressure fields need to be imposed on the

updated interface. In order to avoid the need for an iterative process with a new grid generated at each iter-
ation, we choose the leap-frog scheme to update the free surface position:
xnþ1 ¼ xn�1 þ 2Dtun. ð18Þ

We also tried a second- and third-order Adams–Bashforth scheme with negligible differences. Both methods
are explicit and, therefore, they imply a limitation on the time step, which must be sufficiently smaller than the

period of the shortest capillary waves, of the order of
ffiffiffiffiffiffiffiffiffiffiffiffi
qh3=r

q
, in which h is the node spacing along the free

surface. In the examples that follow this limitation is less stringent than that deriving from the Courant
condition.

For the calculation of [(u Æ $h)u]
n+1/2, we use the second-order Adams–Bahsforth time discretization. As this

scheme is not self-starting, the first step is executed with a trapezoidal-rule time discretization with the result-
ing non-linear equations solved by iteration.

3. Normal mode analysis

In order to demonstrate that the two methods as modified above remain second-order in time, it is useful to
have recourse to a standard normal-mode analysis [60,44,61]. We formulate a differential problem mimicking
the original one in its mathematical structure. Then we consider its semi-discrete version according to the pro-
jection methods as modified before, solve it, and show that the difference with the exact solution is O(Dt2).

We linearize the Navier–Stokes momentum equation by replacing the non-linear term with a forcing f and
set q = 1 for simplicity:
ou

ot
¼ �rp þ mr2uþ f ð19Þ
and solve this equation in the two-dimensional semi-infinite strip X = [0,1) · [�p,p], subject to the incom-
pressibility constraint (1), periodicity conditions at y = ±p and, at x = 0,
pð0; y; tÞ ¼ pgðy; tÞ;
ou
oy

þ ov
ox

¼ 0 ð20Þ
in which pg(y, t) is a prescribed function and u = ux, v = uy. The fields are required to vanish as x ! 1.
The pressure Poisson equation generated by taking the divergence of the linearized momentum equation

(19)
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r2p ¼ r � f ð21Þ
can be solved by expanding in a Fourier series in y, so that
ð�o2x þ k2Þp̂ ¼ � of̂ x

ox
þ ikf̂ y

 !
� �~f ; ð22Þ
where k > 0 is the wave number and the caret indicates the corresponding Fourier mode. The solution is
p̂ ¼ p̂g e
�kx þ 1

2k

Z 1

0

e�kjx�nj~f dn� e�kx

2k

Z 1

0

e�kn~f dn. ð23Þ
With this expression for p̂, the Fourier modes û of the velocity are readily found from (19):
ð�o2x þ k2 þ s=mÞû ¼ � 1

m
rp̂ þ 1

m
f̂; ð24Þ
with s the Laplace variable conjugate to time.
The semi-discrete momentum equation corresponding to (10) is now:
u� � un

Dt
þ brpn�1=2 ¼ m

2
r2ðu� þ unÞ þ fnþ1=2. ð25Þ
After eliminating u* by means of the projection u* = un+1 + Dt$/n+1, we have
unþ1 � un

Dt
þr/nþ1 þ brpn�1=2 ¼ m

2
r2ðunþ1 þ unÞ þ mDt

2
r2r/nþ1 þ fnþ1=2. ð26Þ
Furthermore, the formula (8) used to update the pressure gives
p̂ ¼ j1=2 mDt
2

1þ b
j� 1

� �
ð�o2x þ c2Þ/̂ ð27Þ
with which, after a Fourier expansion and Laplace transformation, Eq. (26) becomes
ð�o
2
x þ k2Þû ¼ jDt

jþ 1
1þ b

j� 1

� �
ðo2x � c2Þr/̂þ 2j1=2

mðjþ 1Þ f̂ ð28Þ
in which b is defined in (9) and
j ¼ esDt; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ r=m

q
; r ¼ 2ðj� 1Þ

Dtðjþ 1Þ ; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2

mDt

r
. ð29Þ
Upon taking the divergence of (28), one finds
ð�o2x þ c2Þð�o2x þ k2Þ/̂ ¼ � 1� b
j

� �
2

mDtj1=2
~f . ð30Þ
The boundary conditions $ Æ u* = 0 and p(0,y, t) = pg(y, t) at x = 0 become
ðo2x � k2Þ/̂ ¼ 0; /̂ ¼ 1

j1=2
1� b

j

� �
p̂g ð31Þ
the solution of which is
/̂ ¼ 1

2kj1=2
1� b

j

� �
2kp̂g e

�kx þ
Z 1

0

e�kjx�nj~f dn� e�kx

Z 1

0

e�kn~f dn

� �

� 1� b
j

� �
1

2cj1=2

Z 1

0

e�cjx�nj~f dn� e�cx

Z 1

0

e�cn~f dn

� �
. ð32Þ
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When this result is substituted into (27), the spurious modes proportional to exp±cx are eliminated and one
recovers the exact result (23) for the pressure. The momentum equation (28) becomes instead
ð�o2x þ k2Þû ¼ � a
m
rp̂ þ a

m
rf̂. ð33Þ
In comparing this equation with the exact one (24) derived earlier, we note that
a � 2j1=2

jþ 1
¼ 1þOðs2Dt2Þ; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ s=m

q
þOðs2Dt2Þ; ð34Þ
which show that the difference is of second order in time.

4. A preliminary numerical test

In order to confirm the error estimate given by the normal-mode analysis, we carry out a preliminary test
for a simple two-dimensional case in which the exact solution of the problem (1)–(4) with q = 1 and m = 1 in
the domain 0 6 x,y 6 (1/2)p is given by
uðx; y; tÞ ¼ � cos x sin y e�2t;

vðx; y; tÞ ¼ sin x cos y e�2t;

pðx; y; tÞ ¼ �1
4
ðcos 2xþ cos 2yÞe�4t.

ð35Þ
For this solution, ou/oy + ov/ox = 0 and, therefore, the tangential stress vanishes at y = 0 and y = (1/2)p. In
the numerical solution, on these two lines we impose the exact value of the pressure and zero tangential stress,
while the exact velocity is prescribed at x = 0 and x = (1/2)p.

The computational domain is discretized by using the same step h in the two spatial directions and a
constant time step of Dt = (1/2)h, so that the Courant number equals 1/2.

We adopt a standard staggered grid arrangement with the pressure and / defined at cell centers and the
velocity components at cell boundaries. The grid near the boundary y = (1/2)p is sketched in Fig. 1, in which
circles represent the p or / points, squares the u points, and triangles the v points. For the Poisson equation,
o2p/oy2 at point (i,J) is approximated by the second-order-accurate one-sided formula involving pi,J+1/2, and
pi,J, pi,J�1. The condition $ Æ u* = 0 at (i,J + 1/2) is used to generate an equation for v�i;Jþ1=2 and imposed in the
form
0 ¼ ðr � u�Þi;Jþ1=2 ¼ 3
2
ðrh � u�Þi;J � 1

2
ðrh � u�Þi;J�1 þOðh2Þ; ð36Þ
where the divergences in the right-hand side are approximated by the usual second-order formula.
Calculations are done with grids of 40 · 40, 80 · 80, 120 · 120 cells. Errors are calculated by comparison

with the analytic solution at time t = 0.196 in both L1 and L1 norms. Table 1 shows the errors for the pressure
and the u- and v-components of the velocity for the pressure-free method; the numbers shown were normalized
i,J

i,J-1/2

i,J-1

i,J-3/2

i-1/2,J

i-1/2,J-1 i+1/2,J-1

i+1/2,J

i,J+1/2

Fig. 1. Staggered grid near the free boundary.



Table 1
Normalized L1- and L1-errors in the pressure and the velocity for the preliminary test of Section 4 with the pressure-free method for
different discretizations with a fixed Courant number equal to 0.5

40 · 40 80 · 80 120 · 120 Rate

Pressure

L1 4.35e � 4 1.14e � 4 5.20e � 5 1.93
L1 1.23e � 3 3.26e � 4 1.51e � 4 1.92

u-Component of velocity

L1 5.11e � 6 1.07e � 6 4.48e � 7 2.22
L1 1.29e � 5 2.75e � 6 1.19e � 6 2.18

v-Component of velocity

L1 1.82e � 5 3.85e � 6 1.43e � 6 2.31
L1 4.03e � 5 8.34e � 6 3.30e � 6 2.28
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by pmax = 1/4 for the pressure. Table 2 shows the analogous results for the pressure-increment method. The
convergence rates are computed using a linear fitting of the results for the three different grids and give results
very close to 2 as expected. An example of the variation of the normalized maximum error in p with different
mesh sizes for the pressure-increment method is shown in Fig. 2 on a logarithmic scale. The analogous plots
for all quantities for both methods are very similar.
Table 2
Normalized L1- and L1-errors in the pressure and the velocity for the preliminary test of Section 4 with the pressure-increment method for
different discretizations with a fixed Courant number equal to 0.5

40 · 40 80 · 80 120 · 120 Rate

Pressure

L1 3.19e � 4 8.27e � 5 4.22e � 5 1.85
L1 1.02e � 3 2.94e � 4 1.40e � 4 1.81

u-Component of velocity

L1 3.28e � 5 8.70e � 6 4.23e � 6 1.87
L1 7.44e � 5 1.92e � 5 9.62e � 6 1.87

v-Component of velocity

L1 1.07e � 4 2.87e � 5 1.18e � 5 2.00
L1 2.27e � 4 5.81e � 5 2.58e � 5 1.98

1 1.5 3

1e–4

1e–3

ε m
ax

 / 
p m

ax
 

h
i
/h

ref

Fig. 2. Normalized maximum pressure error as a function of mesh refinement for the example of Section 4.
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In general, for a second-order method, any measure � of the error may be expected to have the form
� = A(Dt)2 + Bh2, where A and B are related to derivatives of the quantities being calculated. Due to the Cou-
rant number stability limitations, the contribution of the time step is either comparable to, or smaller than,
that of the spatial step so that the effect of Dt cannot be brought out simply by changing the time step. To
circumvent this problem, we carry out N simulations with the same h and time steps Dt1, Dt2, . . . ,DtN and de-
fine errors �k as the norm of the difference between the simulation with Dt = Dtk and that with the smallest
time step, for which the error is dominated by the spatial discretization. By considering the ratios �k/�k+1,
we can then test whether the exponent of Dt in the expression for the error is indeed 2. The results of this anal-
ysis, with a 40 · 40 grid and Dt1 = 0.6h, Dt2 = 0.5h, Dt3 = 0.4h, and a smallest time step Dt4 = 0.04h, are shown
in Tables 3 and 4; these values were calculated at t = 6h = 0.236.

5. Boundary-fitted coordinates

For the solution of actual free-surface problems, we implement the algorithm described in the previous sec-
tions in conjunction with boundary-fitted coordinates generated according to the method of [36] as developed
in [38]. The boundary-fitted coordinates (n,g) are generated by solving
Table
Norma
differen

Pressu

L1

L1

u-Com

L1

L1

v-Com

L1

L1

Table
Norma
differen

Pressu

L1

L1

u-Com

L1

L1

v-Com

L1

L1
o

on
f

o

on

� �
þ o

og
1

f
o

og

� �� �
r

x

� �
¼ 0; ð37Þ
where (r,x) are cylindrical coordinates, f = hg/hn is the distortion function defined in terms of the scale factors
hn = (gnn)

1/2 and hg = (ggg)
1/2, with g the metric tensor. We take n tangential and g normal to the free surface,

with g = 0 the outer boundary and g = 1 the free surface; for both coordinates 0 6 n,g 6 1.
The continuity and momentum equations in (n,g) coordinates are (see e.g. [62])
3
lized L1- and L1-errors in the pressure and the velocity for the preliminary test of Section 4 with the pressure-free method for
t time steps on a 40 · 40 grid

Dt1 Dt2 Dt3 Rate

re

3.72e � 4 2.50e � 4 1.53e � 4 2.19
1.30e � 3 8.72e � 4 5.25e � 4 2.24

ponent of velocity

1.36e � 5 9.06e � 6 5.45e � 6 2.26
4.03e � 5 2.72e � 5 1.68e � 5 2.15

ponent of velocity

9.59e � 5 6.77e � 5 4.42e � 5 1.91
1.49e � 4 1.04e � 4 6.76e � 5 1.95

4
lized L1- and L1-errors in the pressure and the velocity for the preliminary test of Section 4 with the pressure-increment method for
t time steps on a 40 · 40 grid

Dt1 Dt2 Dt3 Rate

re

4.19e � 4 2.95e � 4 1.97e � 4 1.85
1.40e � 3 9.60e � 4 5.96e � 4 2.11

ponent of velocity

1.43e � 5 9.60e � 6 5.82e � 6 2.22
4.30e � 5 2.96e � 5 1.88e � 5 2.04

ponent of velocity

8.91e � 5 6.24e � 5 4.04e � 5 1.95
1.40e � 4 9.70e � 5 6.24e � 5 1.99
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1

hnhgr
o

on
ðhgrunÞ þ

o

og
ðhnrugÞ

� �
¼ 0; ð38Þ

oun
ot

þ 1

hnhgr
o

on
ðhgru2nÞ þ

o

og
ðhnrunugÞ

� �

¼ � 1

q
1

hn

op
on

þ 1

hn

ox
on

g þ Sn1 þ Sn2 þ
m

hnhgr
o

on
hgr
hn

oun
on

� �
þ o

og
hnr
hg

oun
og

� �� �
; ð39Þ

oug
ot

þ 1

hnhgr
o

on
ðhgrunugÞ þ

o

og
ðhnru2gÞ

� �

¼ � 1

q
1

hg

op
og

þ 1

hg

ox
og

g þ Sg1 þ Sg2 þ
m

hnhgr
o

on
hgr
hn

oug
on

� �
þ o

og
hnr
hg

oug
og

� �� �
; ð40Þ
where (un,ug) are velocity components in (n,g) directions and Sn1, Sn2 are given by
Sn1 ¼ �ug
hn
rn

o

ot
xn
hn

� �
þ 1

J
rg
oun
on

� rn
oun
og

� �
ox
ot

þ 1

J
xn
oun
og

� xg
oun
on

� �
or
ot

þ ox
ot

ug
J

rg
hg

ohn
og

þ rn
hn

ohg
on

� �� �
� or

ot
ug
J

xg
hg

ohn
og

þ xn
hn

ohg
on

� �� �
; ð41Þ

Sn2 ¼
u2g
J

ohg
on

� unug
J

ohn
og

� mrn
r2hn

rn
un
hn

þ rg
ug
hg

� �
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where J = hnhg, xn = ox/on, xg = ox/og, rn = or/on, rg = or/og. Sg1 and Sg2 are similar with n and g
interchanged.

The zero tangential stress condition and the normal stress condition on the free surface can be expressed as
hn
hg

o

og
un
hn

� �
þ hg
hn

o

on
ug
hg

� �
¼ 0; ð43Þ
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og

� �
¼ �pg þ rC. ð44Þ
The curvature is calculated from the cubic spline fit of the free surface which is used in the grid generation
process as explained in [38].

If g is the coordinate normal to the free-surface located in correspondence of j = J + 1/2, the explicit form
of the equation for u�g at the boundary generated from (36) is
u�gi;Jþ1=2
¼ 1

ðhnrÞi;Jþ1=2

1

3

ðhnhgrÞi;J
ðhnhgrÞi;J�1

Dg
Dn

ðhgru�nÞiþ1=2;J�1 �
Dg
Dn

ðhgru�nÞi�1=2;J�1 þ ðhnru�gÞi;J�1=2 � ðhnru�gÞi;J�3=2

� �(

� Dg
Dn

ðhgru�nÞiþ1=2;J þ
Dg
Dn

ðhgru�nÞi�1=2;J þ ðhnru�gÞi;J�1=2

)
. ð45Þ
6. Numerical implementation

All the derivatives appearing in the previous equations are calculated on a staggered grid by standard sec-
ond-order-accurate formulae in the computational coordinates.

The computational sequence is the same for both projection methods described in Section 2. Velocity
boundaries are treated as in the original projection method. On free boundaries, at the generic time level
tn, the steps are the following:
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(1) Advance the free surface position to the next time level xn+1 by using (18).
(2) Generate an orthogonal boundary-fitted grid from this updated free-surface configuration as explained

in the previous section.
(3) Calculate (if necessary) the new pressure on the gas side of the interface to be used as boundary condi-

tion for the liquid pressure.
(4) Use the projection algorithm to calculate new estimates of un+1 and pn+1/2, enforcing the normal and

tangential stress conditions on the free surface.

Execution of the last step requires iteration as: (i) the two components of u* are connected by the condition
of zero divergence on the boundary and (ii) the stress boundary conditions involve u (and, therefore, /n+1)
rather than u*. We therefore proceed as follows:

(a) A provisional estimate of un+1 is calculated from (6) using the most recent values of u* and /n+1; for the
first step the values at time tn are used.

(b) With this estimate, the value of the normal component u�g of the intermediate velocity at the boundary is
updated from (45) in which the previous u* is used in the right-hand side.

(c) The value of the tangential component u�n of the intermediate velocity at the boundary is updated from
the tangential stress condition (43) after substitution of (6) using the current estimates of the velocity
un+1 and /n+1.

(d) A new pressure at the boundary is calculated from the normal stress condition (44).
(e) One ADI sweep is carried out to update u* and v* from (10) using the updated boundary conditions.
(f) A new estimate for /n+1 is generated by one ADI sweep on the discretized Poisson equation (7) with

boundary conditions (16).
(g) The process is repeated to convergence.

The iterations are terminated when the maximum relative difference between the values of velocities and
pressure in two successive iterations is smaller than 10�6 and the maximum discretized h|$h Æ u

n+1|, falls below
10�9 times the sum of the moduli of the velocity components. These values were chosen on the basis of stan-
dard convergence studies which showed that relaxing these limits did not appreciably change the results.

The grid generation process is also iterative as described in [38].
The values of the Courant number quoted below are found from
Co ¼ U refDt
minðhnDn; hgDgÞ

; ð46Þ
where Uref is a characteristic velocity and the minimum is calculated over the entire initial grid. This procedure
was followed in order to maintain a constant time step, which is required to examine the convergence rate. In
general applications of the method, it might be more appropriate to use a variable time step, with the Courant
number defined in a similar way, but in terms of the instantaneous values of velocities and mesh sizes.

7. Application to some free-surface problems

We now illustrate how the method performs on some actual free-surface flow problems. The first example
deals with a spherical bubble and is studied for the purpose of validating the method by comparison with the
semi-analytical results available for this case. Next we study both linear and non-linear shape oscillations of a
bubble. We conclude with the simulation of the buoyant rise of a bubble in an unbounded fluid and compare
with earlier solutions.

Implementation of the method requires that the distortion function be prescribed. On the basis of the anal-
ysis of [38], we used two main types
fn ¼ M
a

b� gn
; n ¼ 1; 2; ð47Þ
where M is the conformal modulus, b an arbitrary constant, and a determined from the value assigned to b so
as to meet the constraint given in [38].
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7.1. Radial gas bubble oscillations

The spherical dynamics of a gas bubble of radius R(t) in an unbounded liquid is governed by the Rayleigh–
Plesset equation
R
d2R
dt2

þ 3

2

dR
dt

� �2

¼ 1

q
pg � P1 � 2r

R
� 4l

R
dR
dt

� �
; ð48Þ
where pg is the bubble internal pressure, which we calculate from the isothermal relation
pg ¼
V 0

V
pg0; ð49Þ
in which V = (4/3)pR3, with pg0 and V0 are initial values, and P1 is the (constant) ambient pressure. In order
to provide a more faithful test of the numerical method, we have modified this equation to reflect the fact that,
in the computation, the pressure boundary condition is imposed at a distance S from the bubble center rather
than at infinity. This modified equation is readily derived and is
S � R
S

R
d2R
dt2

þ 2� ðS2 þ R2ÞðS þ RÞ
2S3

� �
dR
dt
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R
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dt

� �
. ð50Þ
The liquid velocity and pressure fields are given by
uðrÞ ¼ R2

r2
dR
dt

; ð51Þ

pðrÞ ¼ PS þ
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rS4

� R4

r4
þ R4

S4

� �
. ð52Þ
In the solution for /, a constant pressure is specified on the outer boundary r = S. For the tangential velocity
un, we specify a vanishing normal derivative, while for the normal velocity ug we impose the incompressibility
condition $ Æ u = 0. For the tangential and normal components of u*, we use (13) and $ Æ u* = 0, the latter
implemented as in (45). The form f2 with b = 8 was used for the distortion function.

Fig. 3 shows a comparison between the solution of (50) and our numerical results with the pressure-incre-
ment method for the first two cycles of oscillation of a bubble with an initial radius of 1 mm. The two results
are virtually indistinguishable. The initial internal pressure is 100 kPa, the ambient pressure 200 kPa, and the
liquid water with q = 103 kg/m3, r = 0.0729 J/m2, l = 0.001138 kg/(m s). The radius S of the outer boundary
was taken as 20 times the bubble initial radius, the time step was 0.5 ls, and a 40 · 40 grid was used. The ref-
erence velocity was the characteristic bubble wall velocity Uref = [(2/3)(P1 � pg0)/q]

1/2 . 8.16 m/s. The Cou-
rant number calculated according to (46) was 0.17.

A more quantitative picture of the performance of the two projection methods can be gained from Tables 5
and 6, which show the L1 and L1 norms of the error for the pressure and radial velocity v as computed by the
two methods with different grid resolution; the azimuthal velocity u vanishes identically for this problem and is
not shown. The last column shows the estimated convergence rate, at t = 30 ls; the Courant number was kept
fixed at 0.26. Here, for the velocity components, the errors have been normalized by dividing by the charac-
teristic bubble wall velocity Uref while, for the pressure, the results shown have been normalized with the char-
acteristic pressure difference PS � pg0 = 100 kPa. For both methods, the convergence rate of the L1 norm for
the pressure and the radial velocity is close to 2. The L1 norm exhibits a somewhat slower convergence rate, as
often found.

For the convergence test, we have used the distortion function f1 defined in (47) with b = 1.01, which
produces a denser grid near the bubble surface which gradually becomes less dense away from it. Use of
the form f2 with different values of b between 1.005 and 8 gave results with a comparable accuracy. How-
ever, while the rate of decrease of the L1 error was similar to that shown in the tables, that of the L1 error
was as low as 1.4. This second form of the distortion function results in a faster growth with distance from
the free surface of the node spacing in the radial direction, which probably explains the somewhat inferior
result (see e.g. [63]).



Fig. 3. Comparison between the Rayleigh–Plesset solution (solid line) and the present results (dashed) as computed with the pressure-
increment method.

Table 5
Normalized L1- and L1-errors in the pressure and velocity for the Rayleigh–Plesset test of Section 7.1 with the pressure-free method; the
Courant number is 0.26

20 · 20 30 · 30 40 · 40 Rate

Pressure

L1 1.73e � 3 7.51e � 4 3.68e � 4 2.22
L1 4.94e � 3 2.27e � 3 1.16e � 3 2.08

v-Component of velocity

L1 3.00e � 3 1.15e � 3 6.68e � 4 2.18
L1 9.37e � 3 4.17e � 3 2.67e � 3 1.82

For this problem, the exact u velocity component vanishes identically and is not shown.
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7.2. Bubble shape oscillations

Due to surface tension, a bubble released with an initial prolate shape will execute damped oscillations. The
linear theory for this process is well developed (see e.g. [64,65]) and a weakly non-linear theory was developed
in [66,67]. To test our method, we consider a gas bubble in water initialized with the shape
rðhÞ ¼ R½1þ �P 2ðcos hÞ�; ð53Þ
with P2 the second Legendre polynomial; the internal pressure was calculated using (49) as before. To compare
with the exact linear theory result we took R = 0.5 mm and � = 0.04 with the same physical properties used
before. With these numerical values, the difference between initial and asymptotic regimes [65,9] is negligible.
The theoretical results for the oscillation period and damping rate are 2.375 and 10.98 ms. The numerical re-
sult with a 40 · 40 grid depended slightly on the size of the computational domain. With an outer boundary
placed at a distance of 20R, the period was found to be 2.32 ms and the damping rate 10.2 ms; with a domain
size 120R, the corresponding results were 2.36 and 10.9 ms, respectively. On the outer boundary, we imposed
the same conditions as in the previous test case.

We carried out another test in the non-linear regime taking � = 0.25 and R = 1 mm. With a domain size of
20R, the first three computed periods were 6.90, 7.08, and 7.15 ms to be compared with the result of [66] (as
corrected in [67]) 7.05 ms; no theoretical results are available for the damping rate in this regime.



Table 6
Normalized L1- and L1-errors in the pressure and velocity for the Rayleigh–Plesset test of Section 7.1 with the pressure-increment method;
the Courant number is 0.26

20 · 20 30 · 30 40 · 40 Rate

Pressure

L1 1.22e � 3 5.25e � 4 3.47e � 4 1.83
L1 3.61e � 3 1.75e � 3 1.20e � 4 1.60

v-Component of velocity

L1 3.69e � 3 1.45e � 3 8.41e � 4 2.14
L1 1.15e � 2 5.09e � 3 3.21e � 3 1.85

For this problem, the exact u velocity component vanishes identically and is not shown.
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For a study of the convergence rate, we take � = 0.25 and R = 0.5 mm, with a domain of size 40 R. The
characteristic velocity is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r=qR

p
’ 661 mm=s and the characteristic pressure 3r/R. 0.437 kPa (the maxi-

mum curvature is about 3/R). We fixed the Courant number at 0.34 and used grids of 20 · 20, 30 · 30,
40 · 40; a fine 120 · 120 grid was assumed to give an essentially exact result. Table 7, where the errors were
evaluated at t = 0.48 ms (about 1/4 period), shows a convergence close to quadratic for pressure and velocity
for the pressure-increment method. The corresponding results for the pressure-free method are quite close and
are not shown for brevity.

A test of the effect of Dt was carried out according to the method described at the end of Section 4 with a
40 · 40 grid. The time steps used were Dt = 0.8, 0.6, and 0.4 ls; Dt = 0.6 ls is the same time step as used for
the results of Table 7 with a 40 · 40 grid. Results for the pressure-free method are shown in Table 8 (at the
same time as for Table 7), and confirm the second-order accuracy in time of the method. The corresponding
results for the pressure-increment method are basically identical and are not shown.

For these calculations, we used the distortion function f1 with b = 1.01.

7.3. Buoyant rise of a gas bubble

We now illustrate the accuracy of our code by simulating the buoyant rise of a gas bubble in an infinite
liquid expanse and comparing with published results. The bubble is released as a sphere with zero velocity
and deforms as the motion develops.

The bubble surface corresponds to g = 1 and the external boundary, g = 0, is taken as a sphere with a
radius of 20 times the equivalent bubble radius. Tests done with an outer radius 50% greater or smaller
revealed negligible differences. The center of the sphere is taken at the midpoint between the points of inter-
section of the bubble surface with the axis of symmetry and is therefore displaced at each time step. On the
Table 7
Normalized L1- and L1-errors in the pressure and the velocity for the shape oscillation test of Section 7.2 with the pressure-increment
method

20 · 20 30 · 30 40 · 40 Rate

Pressure

L1 8.82e � 3 3.26e � 3 1.51e � 3 2.54
L1 3.34e � 2 1.46e � 2 7.01e � 3 2.23

u-Component of velocity

L1 5.62e � 3 2.47e � 3 1.47e � 3 1.94
L1 5.56e � 2 2.61e � 2 1.60e � 2 1.80

v-Component of velocity

L1 7.88e � 3 3.59e � 3 2.20e � 3 1.85
L1 6.13e � 2 2.88e � 2 1.85e � 2 1.74

The Courant number is 0.34 and the results are evaluated at t = 0.48 ms, i.e. slightly before 1/4 of the first oscillation. The errors are
computed with respect to a reference solution obtained with a 120 · 120 grid.



Table 8
Normalized L1- and L1-errors in the pressure and the velocity for the shape oscillation test of Section 7.2 with the pressure-increment
method for different time steps on a 40 · 40 grid

Dt1 Dt2 Dt3 Rate

Pressure

L1 4.40e � 4 2.38e � 4 9.89e � 5 2.15
L1 1.38e � 2 7.90e � 3 3.56e � 3 1.96

u-Component of velocity

L1 4.17e � 4 2.12e � 4 7.98e � 5 2.39
L1 1.34e � 2 7.30e � 3 3.05e � 3 2.14

v-Component of velocity

L1 6.04e � 4 3.09e � 4 1.17e � 5 2.38
L1 9.03e � 3 4.88e � 3 2.03e � 3 2.15

The Courant numbers were 0.45, 0.34, 0.23; the results are evaluated at t = 0.48 ms, i.e. slightly before 1/4 of the first oscillation. The
errors are computed with respect to a reference solution obtained with Dt = 0.1 Dt3 = 0.04 ls.

Table 9
The first group of columns shows results from [37] for the dependence of the drag coefficient CD on the Reynolds and Weber numbers for a
bubble rising under buoyancy

Reference results Present results

Re We CD Re We CD

10 2 2.92 10 2 3.00
10 12 4.25 10 12 4.30
20 2 1.74 20 2 1.77
20 8 2.97 20 8 3.00
100 2 0.54 100 2 0.53
100 4 0.81 100 4 0.83
200 2 0.33 203 2 0.32

The second group of columns shows the corresponding results obtained in the present simulations.
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outer boundary we impose the same conditions as for the previous test case, except that gravity is included in
the specified pressure field. A 40 · 40 grid was used as in the previous examples with the distortion function f2
with b = 8.

Published steady-state results for the drag coefficient CD = 4gD/3U2 [37,39] are given in terms of the Rey-
nolds Re = DU/m and Weber We = qDU2/r numbers. Here D is the equivalent spherical diameter and U is the
terminal velocity. For this comparison, we prescribe the radius and the physical properties of the liquid on the
basis of these results and calculate the terminal velocity. If our calculation is correct, the values of Re,We, and
CD as obtained with our terminal velocity should match those used to establish the initial conditions.

A comparison with some results of [37] are shown in Table 9; the results are shown to the same accuracy as
those given in that paper. The differences are at most of the order of 2–3%. It should be noted that none of the
convergence difficulties caused by the free-surface boundary conditions reported earlier [37,68,69] were encoun-
tered in our calculation. An attempt to carry out the same calculation for Re = 200 and We = 10, however,
failed as a region of very high curvature at the edge of the hemispherical cap gradually develops. This failure
can be imputed to the grid generation part of the algorithm.We have found that, with an increase in the number
of nodes, failure is delayed but we have not tried to complete the calculation due to reasons of time.

It may be noted that, in order to prevent spurious volume oscillations which, with their high frequency,
force the use of an undesirably small time step, it is necessary to calculate the bubble volume accurately.
We used a cubic spline approximation of the bubble surface for this purpose.

8. Summary and conclusions

This paper has described a second-order projection method for the solution of the Navier–Stokes equations
in the presence of a free surface. This feature, and the associated boundary conditions, prevent a direct appli-
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cation of earlier approaches and a suitable adaptation of the method has been necessary. In addition to this
adaptation, a strong motivation of this work was to develop a high-accuracy method which could be used to
validate free-surface three-dimensional codes under development in our group and elsewhere. In particular, we
were interested in formulating a method capable of resolving thin boundary layers near the interface for future
use in the calculation of processes involving phase-change, mass diffusion, and others. For this reason we have
adopted boundary-fitted coordinates which have been successfully integrated with the projection method.

Comparison of our code with available theoretical predictions for volume and shape oscillations of a gas
bubble and with earlier computational results for the buoyant rise of bubbles in liquids has proven its accuracy
and reliability. In particular, instability problems encountered by previous investigators were found to be
absent in the present approach.
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